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Abstract With the fast-growing of DNA self-assembly techniques, a large number
of DNA catenanes or more specifically, DNA polyhedral links were synthesized in the
past decade. As a sequel of a recent paper (J. Math. Chem. 50, p. 1693, 2012) by the
present authors on the enumeration problem of polyhedral links, this paper considers
the enumeration problem of DNA polyhedral links. In contrast to a general molecular
link, a DNA polyhedral link has four notable features: 1. the memory of DNA chain
direction; 2. the accurate DNA complementary base pairing; 3. the twist patterns of
the double-helical strands; 4. the migration in branched junction. These features put
forward particular requests for treating the enumeration problem of DNA polyhedral
links. In addition to using the standard Pólya’s counting theory, we here introduce the
generating function and edge direction retentivity analysis to the enumeration problem,
by which we establish explicit expressions of the numbers of DNA polyhedral links
for three typical models. These models have been used as strategies or are potential
strategies in the synthesis of DNA polyhedral links.
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1 Introduction

Enumeration of molecules is one of the fundamental problems in bioinformatics,
chemoinformatics and has attracted chemists, biologists and mathematicians for more
than one century [1,2]. It is also important from a practical viewpoint because it plays
an important role in drug discovery, experimental structure elucidation (e.g., by NMR
or MS), molecular design [3], virtual libraries constructing, hypotheses testing and
experiments optimizing [4].

Motivated by the problem of chemical isomer enumeration, in the 1930s Pólya [2]
developed a powerful combinatorial theory for the enumeration of symmetry-mediated
equivalence classes of ‘colorings’. This enumeration theory has now become standard
fare in combinatorics texts and named after him, i.e., Pólya’s theorem or Redfield-
Pólya theorem. Following Pólya there have been further refinements for this chemical
problem in a very large number of papers, the earlier of which was nicely reviewed
by Read [5] who also gave a translation (made by Aeppli) of the Pólya’s foundational
paper [2]. The works on this problem for the past few decades can be found, for
example in [6–16] and the references cited therein.

In [17], the present authors considered the enumeration problem of a particular
three-dimensional molecular or chemical compound system which has a polyhedral
frame where the vertices, edges, and faces correspond to ‘units’ such as atoms, bonds,
ligands, polymers, or other objects of chemical interests. This enumeration problem
is mathematically modeled as the so called ‘total coloring’ enumeration problem of a
polyhedron. Here, the notion ‘total coloring’ means to color all the vertices, edges and
faces of the polyhedron by using three or more corresponding color sets. By extending
the fundamental version of Pólya’s enumeration theorem, a theoretical approach for the
number of total colorings of a polyhedron was established. Applying this approach,
the authors gave explicit expressions for the number of certain types of polyhedral
links, a particular type of catenanes, which belongs to the family of ‘3-cross-curve
and double-twist-line covering’ polyhedral links proposed by Qiu [18] inspired by the
recent advances on the study of catenanes, e.g., [19–22].

As a sequel of the above paper, this paper considers the enumeration problem of
DNA polyhedral links in which edges are associated to DNA double strands. Since
the first topological catenane [23] was synthesized in 1961, a large number of DNA
catenanes or more specifically, DNA polyhedral links were synthesized in the past
decade with the fast-growing of the DNA self-assembly techniques [19–21,24–26].
In fact, DNA polyhedral links exist not only in the synthesized molecules but also
in many existing biomolecules in nature, a typical example of which would be the
bacteriophage HK97 capsid [22].

Due to the Watson–Crick principle of the accurate complementary base pairing
and the reaction of highly specific enzymes, DNA has been one of the most exciting
self-assembly molecules and therefore widely used in synthesizing molecules at the
nanometer length scale. The theoretical strategy for synthesizing a DNA polyhedral
link of the desired architecture involves using careful DNA sequence selection to direct
the self-assembly of the structure. In practice, the widely used synthetic strategies in
DNA self-assembly technology are using the pre-prepared building blocks to achieve
the desired configuration or in particular, the desired polyhedral link. Two typical types
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Fig. 1 a Four types of pre-prepared DNA strands; b four single rings to be hybridized and legated; c a
tetrahedron link

of building blocks are the DNA single strands [20,21] and branched DNA junctions
(for example, the Holliday junction [25,27]).

In contrast to other molecular links, a DNA polyhedral link has four notable features,
roughly speaking:

1. the memory of DNA chain direction;
2. the accurate DNA complementary base pairing;
3. the twist of two DNA strands around the helical axis;
4. the branch migration in Holliday junction.

These features put forward specific requests for treating the enumeration problem of
DNA polyhedral links. The enumeration problem of DNA polyhedral links constructed
by means of branched DNA junctions can be mathematically modeled as the typical
vertex coloring problem of polyhedrons. This model can be also regarded as a special
case of the total coloring problem which has been studied in our previous paper [17].

Here we focus our attention on the DNA polyhedral links constructed by means of
DNA single strands, which involve the first three of the above mentioned features. To
this end, in addition to using the standard Pólya’s counting theory, we here introduce
the generating function and edge direction retentivity analysis to extend the counting
techniques introduced in [17], by which we establish explicit expressions of the num-
bers of DNA polyhedral links for three typical models. These models have been used
as strategies or are potential theoretical strategies in the synthesis of DNA polyhedral
links. In our study, chirality is taken into account.

2 Models

One of the laboratory methods using the pre-prepared DNA single strands to synthesize
a DNA polyhedral link is executed as the following steps [21]: 1. hold single strands
together by sticky-end cohesion to form single rings designed to run around faces,
each of which has a nick to be ligated; 2. hybridize single rings by the Watson–
Crick complementary base pairing to form the double helical edges and then form a
polyhedral backbone; 3. close nicks by enzymatic ligation to form a polyhedral link,
as depicted in Fig. 1.
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Using this strategy, Goodman et al. [21] successfully synthesized a DNA tetrahe-
dron, in which strands on different edges are designed to be different.

In some cases, at each vertex of a polyhedron P , the corresponding single strands
may be interlocked, which has been discussed in our previous work [17]. To simplify
our discussion, we will not take this case into account in the following discussion.
Thus, if we neglect the intermediate chemical synthesizing process then a polyhedral
link is determined mathematically by the following factors: 1. the pre-prepared DNA
single strands; 2. the direction of a strand on an edge; 3. the twisting pattern (i.e., the
clockwise pattern and anti-clockwise pattern) and the twisting number (i.e., the times
of a strand circling the axis of the double helix) of the double strand on an edge [17].

Let P be a polyhedron, and let V and E be the vertex set and edge set of P ,
respectively. Following [17], we consider a DNA polyhedral link with frame P as an
edge coloring of P . An edge coloring C is a mapping from the edge set E of P to a
color set CE , i.e., an assignment of each edge of P with a color in CE . It is known
that a rotation or a mirror reflection π which leaves P invariant induces a permutation
on V and E , respectively. In the following, we do not distinguish between a rotation
(or a mirror reflection) π and its induced permutation, i.e., π represents either the
rotation (or a mirror reflection) itself or its induced vertex or edge permutation. From
symmetric group theory, all rotations which leave P invariant form a group. We denote
this group by GP . Moreover, GP × {I, φ} also forms a permutation group acting on
each of V and E [28], where I is the unity permutation and φ is an arbitrary mirror
reflection that leaves P invariant. We note that, for any π ∈ GP , φπ is also a mirror
reflection of P [6,28]. This means that a chiral color will be transferred to be its
antipode (i.e., its mirror image) under the operation of φπ for any π ∈ GP while an
achiral color does not change.

For a coloring C and a vertex or an edge x , we denote by C(x) the color of x
assigned by C . Two colorings C1 and C2 are said to be equivalent under the operation
of GP (resp., GP ×{I, φ}) if there is a permutation π ∈ GP (resp., π ∈ GP ×{I, φ})
such that C1(x) = C2(π(x)) for each x . A coloring is called chiral if it is not equivalent
to its mirror image and called achiral otherwise.

Therefore, the edge coloring enumeration of P , in terms of the standard Pólya’s
theory, is equivalent to determining the number of equivalent coloring classes of P
with the edge color set CE under the operation of GP if chirality is included; or under
the operation of GP × {I, φ} if chirality is neglected (we refer to [17] for details).

Thus, we model the DNA polyhedral links as the following three specific types of
edge colorings of P to meet some specific requirements or synthesis strategies.

Model 1 Let t be the number of different types of the pre-prepared DNA single strands.
Then the color set used for coloring the edges of a polyhedron P is defined as

CE = {〈i, j〉 : i ∈ {1, 2, . . . , t}, j ∈ {−1, 1}},

where i represents the type of the pre-prepared strands and j ∈ {−1, 1} represents
one of the two opposite directions of a strand on an edge. In addition, different edges
are assigned with different types of strands. �
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Remark for Model 1 In a ‘relaxed’ double-helical DNA segment, the two strands
twist around the helical axis once every 10.4–10.5 base pairs of sequence, i.e., the
twisting number is proportional to the length of the double strand. For the ‘un-relaxed’
state, a DNA double strand of a given length can have various twisting numbers under
different twist strains taken by enzymes. This case can be treated simply by regarding
the strands with different twisting numbers as different types of strands. Therefore,
Model 1 is still available for modeling this requirement. In addition, to simplify our
discussion we do not distinguish the two twisting patterns. �

In the following models, we will consider the general case in which DNA double
strands on edges are not necessarily different. Moreover, the twisting number and the
twisting pattern are taken into account.

Model 2 Let t1 and t2 be the number of different types of the symmetric and non-
symmetric single strands, respectively. Here, for the notion ‘symmetric’ we mean that
the base sequence of the DNA strand is symmetric. Let n be the maximum limit of
the twisting number on each edge. Then the color set used for coloring the edges of a
polyhedron P is defined as

CE ={〈i, j, h〉 : i ∈ {1, 2, . . . , t1+t2}, j ∈ {−n, . . . ,−1, 0, 1, . . . , n}, h ∈ {−1, 1}}

where

(1). i represents a type of the symmetric single strands if 1 ≤ i ≤ t1 or the non-
symmetric single strands if t1 + 1 ≤ i ≤ t1 + t2;

(2). j represents the twisting number in which the positive sign and the negative sign
represent the clockwise pattern and anti-clockwise pattern, respectively;

(3). h ∈ {−1, 1} represents the two directions of a strand on an edge. We note that if
1 ≤ i ≤ t1 then 〈i, j,−1〉 and 〈i, j, 1〉 represent the same color. ��

Remark for Model 2 The parameter j is generally set to fit with the ‘un-relaxed’
state in which DNA double strands can have various twisting numbers. For ‘relaxed’
state, we may simply set j = 1 for clockwise pattern and j = −1 for anti-clockwise
pattern. Moreover, we note that the two patterns are chiral, i.e., a clockwise pattern
is the antipode of an anti-clockwise pattern under the operation of a mirror reflection
and vise versa. Since the two single strands on an edge are determined by each other,
we only consider one of the two single strands on an edge. Therefore, {1, 2, . . . , t1 +
t2} represents only the types of those single strands in which no two strands are
complementary. ��
Model 3 This model is the same as Model 2 with only one additional constraint: the
total sum of the twisting numbers on edges is a constant k. ��
Remark for Model 3 This model comes from the fact that, in some cases, the twists
on an edge may ‘move’ to another edge through a certain type of the interlocked
patterns (e.g., the Holliday junction [25,27] or the T -linkage [26]) at a vertex of
the polyhedron. When such movement happens, though the twisting numbers on the
relevant edges may change, the sum of twisting numbers of all the edges will keep to
be a constant. In particular, the twists of clockwise pattern and anti-clockwise pattern
will counteract to each other when twists movement happens.
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3 Discussions, results and examples

3.1 Model 1

Since the types of strands on edges are pairwise different and each strand has two
possible directions, P has exactly 2εt (t − 1) · · · (t − ε + 1) different edge colorings
in total, where ε is the number of edges in P . Moreover, each coloring is equivalent to
exactly |GP | (the order of GP ) colorings of P under the operation of the group GP .
Therefore, the number of equivalent edge coloring classes of P equals

nP (t) = 2εt (t − 1) · · · (t − ε + 1)

|GP | (1)

if chirality is included, i.e., each chiral pair of polyhedral links is separately counted.
Now we consider the case when chirality is neglected, i.e., each chiral pair of

polyhedral links is counted just once. Let v be a vertex of P and let the edges incident
to v be assigned with the colors c1, c2, . . . , cd in the clockwise order by an edge
coloring C . Then in the mirror image of P , these colors are mapped to be in the
anticlockwise order, i.e., the colors of the edges incident to v in the mirror image
are assigned with the colors cd , . . . , c2, c1. We notice that c1, c2, . . . , cd are pairwise
distinct. This means that the coloring C restricted on the edges incident to v cannot
be transferred to that of its mirror image. Therefore, C is chiral. Thus, if chirality is
neglected then the number of different polyhedral links is exactly the half of nP (t).

Example 1 Consider the DNA tetrahedral link synthesized by Goodman et al. [21] in
which six types of DNA strands are pre-prepared, i.e., t = 6. Then, by (1) we have
nP (6) = 3840 if chirality is included.

3.2 Model 2

Let π be a permutation on the edge set induced by a rotation or a mirror reflection
of the polyhedron P . Let O = e1e2, . . . , el be a cycle of π and let ui , vi be the two
end vertices of the edge ei , i = 1, 2, . . . , l. With no loss of generality, we assume
that π(ui ) = ui+1, π(vi ) = vi+1 for i = 1, 2, . . . , l − 1. We say that e1 is direction-
preserved by π if π(ul) = u1 and π(vl) = v1. Otherwise, i.e., π(ul) = v1 and
π(vl) = u1, e1 is said to be direction-reversed. We note that, by the symmetry of O , if
e1 is direction-preserved (resp., direction-reversed) then each edge on O is direction-
preserved (resp., direction-reversed) and therefore, O is called direction-preserved
(resp., direction-reversed). Let C be an edge coloring of P left fixed by π . It can be
seen that if O is direction-reversed then the colors of each edges on O assigned by
C must be symmetric. Conversely, if O is direction-preserved then the color of edges
assigned by C can be either symmetric or asymmetric.

Property 1 Let O = e1e2, . . . , el be a cycle of the permutation on edges induced by
a rotation π ∈ GP . Then O is direction-reversed if and only if π �= I and l = 1.

Proof If π = I , then e1 is clearly direction-preserved by the definition of the unity
permutation. We now assume that π �= I .
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Fig. 2 Edge(s) under the operation of a rotation

If l = 1, i.e., π(e1) = e1, then we have π(u1) = u1 and π(v1) = v1 or π(u1) = v1
and π(v1) = u1. If π(u1) = u1 and π(v1) = v1, i.e., π fixes two points of the
polyhedron P , then π is the unity permutation since P is rigid in the three dimensional
space, which contradicts the assumption that π �= I . Thus, π(u1) = v1, π(v1) = u1,
i.e., e1 is direction-reversed, see Fig. 2a.

Now suppose that l > 1. Note that π is a rotation which leaves the polyhedron P
invariant. Therefore, e1, e2, . . . , el , lie in the three dimensional space symmetrically
around the rotation axis. Thus, the two end vertices of each edge belong to two different
cycles of π , respectively, see Fig. 2b. This implies that π(ul) = u1 and π(vl) = v1,
i.e., e1 is direction-preserved. This completes the proof. ��
For a permutation π on the edge set of a polyhedron P and i ∈ {1, 2, . . . , ε}, let bi (π)

(ε = b1(π) + 2b2(π) + · · · + εbε(π)) be the number of cycles of length i in the
disjoint cycle decomposition of π . The cycle index of π is defined by

π(x1, x2, . . . , xε) = xb1(π)
1 xb2(π)

2 , . . . , xbε(π)
ε .

Theorem 1 If chirality is included, then the number of the DNA polyhedral links of
Model 2 is given by

n(P, t1, t2, n) = 1

|GP |

⎛
⎝βε +

∑
π∈GP\I

αb1(π)
ε∏

i=2

βbi (π)

⎞
⎠

= 1

|GP |

⎛
⎝βε +

∑
π∈GP\I

π(α, β, · · · , β)

⎞
⎠ ,

where α = t1(2n + 1) and β = (t1 + t2)(2n + 1).
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Proof By Burnside’s lemma,

n(P, t1, t2, n) = 1

|GP |
∑

π∈GP

Ψ (π),

where Ψ (π) is the number of the edge colorings C left fixed by π [29].
We now determine the number Ψ (π). Let O = e1e2, . . . , el be a cycle of π . Then

by the Pólya’s counting theory [29], the colors of all the edges of O assigned by C are
the same with C(e1) and is therefore called the color of the cycle O assigned by C .

First assume that π = I , i.e., each cycle is formed by one edge. Then by Property
1, each cycle is direction-preserved. Therefore, the color of each cycle, i.e., each edge,
assigned by C can be either symmetric or asymmetric. This means that the number of
colorings left fixed by π is exactly |CE |ε = [(t1 + 2t2)(2n + 1)]ε since the number of
cycles of π , i.e., the number of edges, is ε.

Now we assume that π �= I . Let O = e1e2, . . . , el be a cycle of π . If l = 1 then,
by Property 1, O is direction-reversed. Thus, if a coloring C is left fixed by π then
only symmetric colors can be used for the edges on O . The number of such colors is
exactly t1(2n + 1).

If l > 1 then, again by Property 1, O is direction-preserved. That is, any colors can
be used for O . The number of such colors is clearly (t1 + 2t2)(2n + 1).

From the above argument we can conclude that

Ψ (π) = [(t1 + 2t2)(2n + 1)]ε

if π = I ; or

Ψ (π) = [t1(2n + 1)]b1(π)
ε∏

i=2

[(t1 + 2t2)(2n + 1)]bi (π)

if π �= I . This completes our proof. ��
Let π ∈ φG, where φ is an arbitrary mirror reflection of P . For i ∈ {1, 2, . . . , ε},

let

(1). αi = t1(2n + 1) if i is even and αi = t1 otherwise;
(2). βi = (t1 + 2t2)(2n + 1) if i is even and βi = t1 + 2t2 otherwise;
(3). ri (π) and pi (π) be the numbers of direction-reversed and direction-preserved

cycles of length i in π , respectively.

Theorem 2 If chirality is neglected, then the number of the DNA polyhedral links of
Model 2 is given by

n∗(P, t1, t2, n) = 1

2
n(P, t1, t2, n) + 1

2|GP |
∑

π∈φGP

ε∏
i=1

α
ri (π)
i β

pi (π)
i .
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Fig. 3 The tetrahedron P4 (left), cube P6 (middle) and dodecahedron P12 (right)

Proof Again by Burnside’s lemma,

n∗(P, t1, t2, N ) = 1

|{I, φ} × GP |
∑

π∈{I,φ}×GP

Ψ (π)

= 1

2|GP |
∑

π∈GP

Ψ (π) + 1

2|GP |
∑

π∈φGP

Ψ (π)

= 1

2
n(P, t1, t2, n) + 1

2|GP |
∑

π∈φGP

Ψ (π).

Let C be a coloring left fixed by π ∈ φGP and let O = e1e2, . . . , el be a cycle
of π . Recall that if O is direction-reversed by π then the color of O assigned by
C must be symmetric and if O is direction-preserved then the color of O can be
either symmetric or asymmetric. This implies that if O is direction-reversed then the
possible colors c = 〈i, j, k〉 that can be used for O must satisfy 1 ≤ i ≤ t1 and if O
is direction-preserved then i can be any integer with 1 ≤ i ≤ t1 + t2.

On the other hand, noticing that π ∈ φGP is a mirror reflection, we have

C(e1) = C(e2) = C(e3) = C(e4) = · · · ,

where C(ei ) represents the mirror image of C(ei ) under the operation of π . Thus, if l is
odd and C(e1) is chiral, i.e., C(e1) �= C(e1), then C(e1) = C(e2) = C(e3) = C(e4) =
· · · = C(el) = C(e1), which is a contradiction. In other words, no chiral color can
be used for an odd cycle of π . Since the clockwise pattern and anti-clockwise pattern
with the same twisting number are chiral pair (i.e., mirror images of each other), only
those colors c = 〈i, j, k〉 with twisting number j = 0 can be possibly used for an odd
cycle.

From the above discussion, we can now conclude that:

(1). If O is direction-reversed and l is even (resp., l is odd) then the number of colors
can be used for O is t1(2n + 1) (resp., t1);

(2). If O is direction-preserved and l is even (resp., l is odd) then the number of colors
can be used for O is (t1 + 2t2)(2n + 1) (resp., t1 + 2t2).
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Fig. 4 The tetrahedron (left) and its mirror image (right) with respect to the plane P

Therefore,

Ψ (π) =
ε∏

i=1

α
ri (π)
i β

pi (π)
i ,

which completes our proof. ��
As an application of Theorems 1 and 2, in the following we deduce the explicit enu-

merating expressions of Model 2 for the 3-vertex-regular Platonic polyhedra (Plato’s
solids): i.e., each vertex has degree 3 and all the faces are equal regular polygons.
From geometric theory, there are only three such polyhedrons, i.e., the tetrahedron
P4, the cube P6 and the dodecahedron P12 [28], as shown in Fig. 3.

Example 2 The tetrahedron P4.
Let the vertices of P4 be numbered by 1,2,3 and 4, as depicted in Fig. 4a. Then

the 12 edge permutations induced by all the 12 rotations of P4, in form of cycle
decomposition of edges, are

I, ([12][13][14])([23][34][42]),
([12][14][13])([23][42][34]), ([12][23][31])([41][42][43]),
([12][31][23])([41][43][42]), ([13][34][41])([21][23][24]),
([13][41][34])([21][24][23]), ([12][24][41])([31][32][34]),
([12][41][24])([31][34][32]), ([12])([34])([14][23])([13][24]),
([14])([23])([13][24])([12][34]), ([13])([24])([14][23])([12][34]),

where [i j] represents the edge i j . Then by Theorem 1, we have

n(P4, t1, t2, n) = 1

12

(
β6 + 3α2β2 + 8β2

)

= 1

12

(
(t1+2t2)

6(2n+1)6+3t2
1 (t1+2t2)

2(2n+1)4+8(t1+2t2)
2(2n+1)2

)
.
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For the number n∗(P4, t1, t2, n), we choose φ as the mirror reflection with respect to
the plane P , as illustrated in Fig. 4. Therefore, in form of cycle decomposition of ver-
tices, we have φ = (24). On the other hand, all the 12 permutations of the mirror image
of P4 (see Fig. 4b) on vertices are I, (234), (243), (134), (143), (124), (142), (123),

(132), (12)(34), (14)(23), (13)(24).

If ρ = I then the edge cycle decomposition of π = φρ is

([12][14])([13])([23][43])([24]).

Moreover, by the definitions of direction-reversed and direction-preserved cycle we
can check that the cycle ([24]) is direction-reversed since π(2) = 4 and π(4) = 2,
while all the other three cycles are direction-preserved. Thus,

ε∏
i=1

α
ri (π)
i β

pi (π)
i = α1β1β

2
2 = t1(t1 + 2t2)

3(2n + 1)2.

Similarly, if ρ = (14)(23) then the edge cycle decomposition of π = φρ is

([12][41][34][23])([24][13]),

in which the cycle ([24][13]) is direction-reversed while the other is direction-
preserved. Therefore,

ε∏
i=1

α
ri (π)
i β

pi (π)
i = α2β4 = t1(t1 + 2t2)(2n + 1)2.

In this way, we can calculate

∑
π∈φGP4

ε∏
i=1

α
ri (π)
i β

pi (π)
i = 6α1β1β

2
2 + 6α2β4

= 6t1(t1 + 2t2)3(2n + 1)2 + 6t1(t1 + 2t2)(2n + 1)2.

Then by Theorem 2 we have

n∗(P4, t1, t2, n) = 1

24

[(
β6 + 3α2β2 + 8β2

)
+

(
6α1β1β

2
2 + 6α2β4

)]

= 1

24

[
(t1 + 2t2)

6(2n + 1)6 + 3t2
1 (t1 + 2t2)

2(2n + 1)4 + 8(t1 + 2t2)
2(2n + 1)2

+6t1(t1 + 2t2)
3(2n + 1)2 + 6t1(t1 + 2t2)(2n + 1)2

]
.

When t1 = 0, t2 = 1 and n = 0 we have

n(P4, 0, 1, 0) = 8, n∗(P4, 0, 1, 0) = 4.
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T1 1 T2 2

4T43T3

T * T *

T *T *

Fig. 5 The 8 tetrahedron links in which Ti and T ∗
i are chiral pair, i = 1, 2, 3, 4

The corresponding 8 tetrahedral links are depicted as in Fig. 5, all of which are chiral.
By the same discussion as for the tetrahedron, we can get the numbers for P6 and

P12 as the following two examples.

Example 3 The cube P6.

n(P6, t1, t2, n) = 1

24

(
β12 + 8β4 + 6β3 + 3β6 + 6α2β5

)
,

n∗(P6, t1, t2, n) = 1

48

[(
β12 + 8β4 + 6β3 + 3β6 + 6α2β5

)

+
(

3α4
1β4

2 + 6β2
1β5

2 + β6
2 + 6β3

4 + 8β2
6

)]
.

Example 4 The dodecahedron P12.

n(P12, t1, t2, n) = 1

60

(
β30 + 20β10 + 24β6 + 15α2β14

)
,

n∗(P12, t1, t2, n) = 1

120

[(
β30 + 20β10 + 24β6 + 15α2β14

)

+
(
β15

2 + 24β3
10 + 20β5

6 + 15α2
1β2

14

)]
.

3.3 Model 3

Let nk(P, t1, t2, n) and n∗
k(P, t1, t2, n) denote the numbers of DNA polyhedral links

in Model 3 in which chirality is included and neglected, respectively. Let f (x) and
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f ∗(x) be the generating functions of nk(P, t1, t2, n) and n∗
k(P, t1, t2, n), respectively:

f (x) =
∞∑

k=1

nk(P, t1, t2, n)xkand f ∗(x) =
∞∑

k=1

n∗
k(P, t1, t2, n)xk .

Theorem 3

f (x) = 1

|GP |

⎡
⎣β1(x)ε +

∑
π∈GP\I

α(x)b1(π)
ε∏

i=2

βi (x)bi (π)

⎤
⎦ ,

where βi (x) = (t1 + 2t2)
∑n

j=−n xi j , i = 1, 2, . . . , ε, α(x) = t1
∑n

j=−n x j .

Proof Assume firstly that π = I . Let k1 + k2 + · · · + kε = k with −n ≤ ki ≤ n.
Then the number of colorings left fixed by π with twisting number ki on the i th edge
is (t1 + 2t2)ε. Thus, the number of colorings left fixed by π with the total twisting
number k (the sum of all the twisting numbers on edges) is exactly

∑
k1+k2+···+kε=k

(t1 + 2t2)
ε = P(k)(t1 + 2t2)

ε,

where P(k) is the number of integer solutions of the equation

x1 + x2 + · · · + xε = k

with −n ≤ xi ≤ n. Notice that P(k) is exactly the coefficient of xk in

(
x−n + · · · + x−1 + 1 + x + · · · + xn

)ε

.

We now assume that π �= I . Let O = e1e2, . . . , el be a cycle of length l. Since
the twisting numbers of the edges on O must be the same, say i , the total number of
twistings of O is il. The remaining discussion is analogous to that for the case π = I
and is omitted here. This completes the proof. ��
Theorem 4

f ∗(x) = 1

2
f (x) + 1

2|GP |
∑

π∈φGP

ε∏
i=1

αi (x)ri (π)βi (x)pi (π),

where αi (x) = t1
∑n

j=−n xi j if i is even and αi (x) = t1 otherwise; βi (x) = (t1 +
2t2)

∑n
j=−n xi j if i is even and βi (x) = (t1 +2t2) otherwise; ri (π), pi (π) are defined

as for Theorem 2.

Proof The proof is the same as that for Theorems 2 and 3 by replacing α and β by
αi (x) and βi (x), respectively. ��
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